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1 Introduction
In recent years, 64-bit architectures have emerged from IBM, Intel, and AMD.  The most obvious gain
from 64-bit systems over 32-bit systems is the ability to address memory passed the 4 GB limit.  This is
an important feature for scientific computing, which deals with large data sets, but has become more
important to the average user as memory prices fall, larger memory sizes become available, and
programs expect more memory.  However, this extension is not the only adjustment made from moving
to a 64-bit system.  In this report, we attempt to determine how performance is affected by moving
forward to 64-bit architectures.

2 Test Systems
In the following sections, we provide a summary of the hardware and software used for the
experiments.  We first list the main hardware and software components.  This is followed by the
particular benchmark suite used.  Finally, the profiling tool employed is described.

2.1 Main Hardware and Software Components
The hardware and software components used are summarized in Tables 1 and 2.  Table 1 shows us
using the AMD64 architecture for our experiments.  AMD64 supports two modes of primary interest—
64-bit mode and compatibility mode.  With 64-bit mode, AMD64 extends the x86 architecture by
adding several improvements:

• 64-bit virtual addresses
• Register extensions:

- 8 GPRs added (16 total)
- GPRs widened to 64 bits
- 128-bit streaming SIMD extensions (SSE) registers added

• 64-bit instruction pointer
• Instruction-relative data-addressing mode

The other notable mode, compatibility mode, provides binary compatibility with existing 32-bit x86
applications.  This allows programs to run under 64-bit system software without recompilation.
Using both these modes, we can more accurately measure the performance difference between 32-bit
and 64-bit versions of the same program by running each version on the same machine.

Table 1 – Components of AMD64 test system
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Hardware Software
Hardware Vendor: Advanced Micro Devices Operating System:

CPU: AMD Athlon (TM) 64 3200+ Compiler: GNU GCC version 3.3.3
CPU MHz: 2000 File System: ext3
Motherboard: Gigabyte K8 Triton (GA-K8N Pro)
Primary Cache: 64 KB (Inst.) + 64 KB (Data) on chip
Secondary Cache: 1024 KB (I+D) on chip
Memory: 2x512MB PC3200 DDR SDRAM
Hard Disk Drive: Maxtor 6Y080M0, SATA, 7200 rpm

Fedora Core 2 (Red Hat) 
GNU/Linux, kernel 2.6.5



Table 2 shows the other test system we will be using.  This system, comprised of a Pentium 4 without
Hyper-Threading, is strictly a 32-bit system.  Although we would have preferred to use another AMD
Athlon processor,  one was not available at the time of these tests.  Noting that the raw clock speed of
the Intel processor (2.4 GHz) is 20% faster than that of the AMD (2.0 GHz), we will be curious to see if
AMD's alternate processor labeling (3200+) indeed holds true or if Intel's reliance on clock speed is the
more accurate metric.

Table 2 – Components of Pentium 4 test system

2.2 Benchmark Suite
We use the CPU2000 benchmark developed by the Standard Performance Evaluation Corporation
(SPEC).  We used only a subset of the full suite for our tests—gzip, mcf, vpr, crafty, bzip2, parser, and
twolf for the integer benchmarks and ammp, art, equake, and mesa for the floating point benchmarks.
We used GCC version 3.3.3 to compile the benchmark programs for both systems.  We used the -O3
and -fomit-frame-pointer optimization flags when compiling the programs.  The flag -m32 was used to
compile programs into 32-bit compatibility mode on the AMD64.  This flag was omitted on the natively
32-bit Pentium 4 machine.  Table 3 summarizes the benchmarks used and compiler flags used.

Table 3 – Selected benchmarks and compiler flags used for tests
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Hardware Software
Hardware Vendor: Intel Corporation Operating System:

CPU: Pentium 4 Compiler: GNU GCC version 3.3.3
CPU MHz: 2400 File System: ext3
Motherboard: Intel D850EMV2
Primary Cache:

Secondary Cache: 512 KB (I+D) on chip
Memory: 1x512MB PC2100 DDR SDRAM
Hard Disk Drive:

Fedora Core 2 (Red Hat) 
GNU/Linux, kernel 2.6.5

12 k micro-ops (Inst.) + 8 KB (Data) on 
chip

Western Digital WD800JBRTL, EIDE, 
7200 rpm

Benchmarks (SPEC CPU2000)
CINT: gzip mcf vpr bzip2 parser twolf
CFPU: ammp art equake mesa

Compiler Flags (GCC 3.3.3)
64-bit: -O3 -fomit-frame-pointer
32-bit: -O3 -fomit-frame-pointer -m32



2.3 Profiling Tool
We use the publicly available OProfile utility to generate profile data for the benchmarks.  It consists of
a kernel driver, a daemon for collecting sample data, and several post-profiling tools for interpreting
data.  OProfile is a statistical continuous profiler.  Profiles are generated by regularly sampling the
performance counter registers on a CPU and recording the current program counter after a certain
number of events have occurred.  When running the profiler, two main parameters are specified—an
event to monitor and a threshold count.  Every time the number of occurrences of an event exceeds the
given threshold, an interrupt to software is generated, which can be sampled by OProfile and matched
to the corresponding binary image of a process.  The events that can be monitored, such as cache
accesses and branch mispredictions, are architecture specific as not all systems provide the same
hardware performance counter registers.  Refer to Appendix B for information on using OPorfile.

Table 1 shows the events we measure for the AMD64 machine.  For all the benchmark programs, we
are interested in the number of clock cycles, number of instructions, and cache information.  For the
integer benchmarks, we view the branch information as the next most important data to track.
However, for the floating point programs, we measure the number of floating point instructions and
dispatch stalls caused by a full floating point unit as we feel this has a strong impact on performance.
The counts were selected to be rather high in attempt to reduce the overhead associated with running the
profiler.  Using higher values sacrifices some accuracy, but too low a value will actually freeze a system
due to the large number of interrupts generated.

Table 4 – OProfile events used for AMD64 system

For the Pentium 4, we only measure two events—clock cycles and instructions—as shown in Table 2.
One reason is that, unlike with the AMD processor, OProfile uses synthesised events and doesn't
provide low-level access to P4 hardware.  Also, we feel that the primary events of interest are the
number of clock cycles and instruction count.

Table 5 – OProfile events used for Pentium 4 system
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Event Count Description Benchmark
GLOBAL_POWER_EVENTS 1000000 Cycles outside of halt state INT, FPU

INSTR_RETIRED 1000000 Retired instructions INT, FPU

Event Count Description Benchmark
CPU_CLK_UNHALTED 1000000 Cycles outside of halt state INT, FPU

RETIRED_INSNS 1000000 Retired instructions INT, FPU

DATA_CACHE_ACCESSES 100000 Data cache accesses INT, FPU

DATA_CACHE_MISSES 10000 Data cache misses INT, FPU

ICACHE_FETCHES 100000 Instruction cache fetches INT, FPU

ICACHE_MISSES 10000 Instruction cache misses INT, FPU

RETIRED_BRANCHES 100000 Retired branches INT

RETIRED_BRANCHES_MISPREDICTED 10000 Retired branches mispredicted INT

RETIRED_FPU_INSTRS 100000 Retired floating point instructions FPU

DISPATCH_STALL_FPU 100000 Dispatch stalls when FPU is full FPU



3 Benchmark Experiments
We provide several results from running the benchmarks.  First, the SPEC base times are shown.  Using
these times as a base, further analysis is conducted using profiled data.  Note that all results shown are
the average of three runs.

3.1 SPEC Experiments
Figure 2 shows the SPEC base numbers we recorded from the integer benchmarks for each system.  As
shown, the results do not show a consistent performance increase from compiling in 64-bit mode as
opposed to 32-bit mode.  While the benchmarks gzip, vpr, crafty, and bzip2 yield improved
performance in 64-bit mode, the other benchmarks—mcf, parser, and twolf—show degraded
performance when run in 64-bit mode instead of 32-bit mode.  We see that the benchmark crafty, which
relies primarily on 64-bit integer operations, has the largest relative performance increase in 64-bit
mode.  This leads us to suspect that some programs might see a larger increase in speed if they were
designed or programmed to take advantage of the new 64-bit features.  Perhaps, then, the relatively poor
performance for the mcf program in 64-bit mode could be improved somewhat.  We also note that
despite the higher clock rate, the 2.4 GHz Pentium 4 is in all cases significantly slower than the 2 GHz
AMD processor.  We guess that some other architectural features of the AMD64, such as the much
larger cache or shorter pipeline, compensate for the lower clock rate.

Figure 1 – Base run time for integer benchmarks given by SPEC tools
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Figure 2 shows the base numbers for the floating point benchmarks.  We see gains in performance for
all the floating point benchmarks except for equake where the results are nearly equal.  The art
benchmark especially sees a very large performance boost with an 80% decrease in run time for the 64-
bit version.  We believe the 64-bit nature of most floating point data allowed for more efficient
operation in 64-bit mode.

Figure 2 – Base run time for floating point benchmarks given by SPEC tools

Table 6 shows the speedup gained from going from a 32-bit compiled application to a 64-bit compiled
application on the AMD64 system using the SPEC base run times from Figures 1 and 2 where

Speedup = 32-bit Execution Time / 64-bit Execution Time.
While the speedup for the integer benchmarks is negligible, the floating point gains are significant.

Table 6 – Speedup from using 64-bit mode instead of 32-bit mode
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gzip mcf vpr crafty bzip2 parser twolf Average
Speedup 1.14 0.69 1.09 1.45 1.04 0.86 0.89 1.02

ammp art equake mesa Average
Speedup 1.23 1.8 0.98 1.53 1.39



3.2 Profiling Experiments
Having performed some preliminary analysis of performance using the SPEC tools, we now use the
profiler to gain deeper insight into performance issues.  First, we look at the number of clock cycles and
instructions used by each benchmark.  Then we analyze the data and instruction cache performance.
Finally, we assess the role of branches on performance for the integer benchmarks and dispatch stall
cycles for the floating point benchmarks.  Our data is also summarized in tabular form in Appendix A.

3.2.1 Clock Cycles and Instruction Count
The number of clock cycle samples is shown in Figure 3 for the integer benchmarks.  Note that only
the number of samples are given, so the actual number of clock cycles for gzip, for instance, is
263,136 * 1,000,000, not just 263,136 in 64-bit mode.  We see that the profiling results reflect the
SPEC results in that gzip, vpr, crafty, and bzip2 show improved results in 64-bit mode, while mcf,
parser, and twolf have worse results in 64-bit mode.

Figure 3 – Number of clock cycles used by each integer benchmark

Using these numbers, we can calculate the CPU time using the following formula:
CPU Time = Number of Clock Cycles / Clock Rate.

For clock rate, we multiply the clock rate for each processor in MHz (2000 and 2400) by 106 to
express CPU time in seconds.  The number of clock cycles, obviously, comes from Figure 3, but we
must multiply by 1,000,000 since that is our sampling count.  As 1,000,000 equals 106 , we simply
take our sample count and divide by the clock rate to obtain the CPU time in seconds.  This gives us
another showing of run time in Figure 4.  We see that the numbers are very similar to the base run
time generated by SPEC in Figure 1.  The times here are possibly larger due to the overhead required
by the profiler.  We do, however, see the same trends holding for the benchmarks seen in Figure 1.
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Figure 4 – Run time for integer benchmarks based on profile data

Figure 5 shows the clock cycles for the floating point benchmarks, while Figure 6 shows the run
time using this data.  We compute CPU time for the floating point benchmarks in the same way as
for the integer programs.  Again, we note the similarity between these times and the ones produced
by SPEC.

Figure 5 – Number of clock cycles used by each floating point benchmark
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Figure 6 – Run time for floating point benchmarks based on profile data

Using the profile data, we summarize the speedup from using 64-bit mode instead of 32-bit mode for
the programs in Table 7.  The speedup seen here is only slightly higher than that seen in Table 6.

Table 7 – Speedup from using 64-bit mode instead of 32-bit mode based on profile data

Figures 7 and 8 show the dynamic instruction counts for the integer and floating point benchmarks,
respectively.  By retired instruction, we mean instructions that were both fetched and executed, e.g.,
instructions that were fetched but discarded due to a branch misprediction are not counted.
Additionally, the number of instructions refers to actual x86 instructions, not the RISC-like micro-
ops that each instruction is translated to.  

We see that for a given integer benchmark that the number of instructions are nearly the same across
the different systems and modes.  The integer benchmark crafty and all the floating point
benchmarks show fewer instructions being executed in 64-bit mode.  We theorize that, since these
programs deal with 64-bit data types, in 32-bit mode additional data fetches must occur in order to
retrieve one piece of data.  This implies an additional reference to memory can be removed for 64-bit
mode.
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Figure 7 – Number of instructions executed for integer benchmarks based on profile data

Figure 8 – Number of instructions executed for floating point benchmarks based on profile data
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3.2.2 Cache Performance
Figure 9 shows the total number of data cache accesses.  For nearly every benchmark, the number of
accesses is reduced for the 64-bit programs.  This is most pronounced in the crafty and floating point
benchmarks, supporting our theory that the 64-bit hardware reduces the number of data fetches for
those programs that deal primarily with 64-bit data.  For the other benchmarks, we guess that the 8
additional GPRs allow for fewer data fetches also.

Table 8 shows the data cache miss rate for each benchmark.  Although the results show the 64-bit
compiled benchmarks having higher miss rates, this should only be considered in light of the total
number of accesses.  For instance, the art benchmark has nearly twice the miss rate in 64-bit mode,
but the total number of misses by 32-bit art is about twice that of the 64-bit version since the 32-bit
version performs so many more accesses.  Another observation we make is that mcf has a
significantly higher miss rate in 64-bit mode (32% versus 23%).  Since the total number of data
cache accesses are approximately the same, we see one cause of the reduced performance for this
program in 64-bit mode.  In fact, referring to Figure 10 listing total number of misses, we see more
cache misses for those programs having longer execution times in 64-bit mode.  As a benchmark
such as mcf is dominated by loads, we again see this as a strong indicator to where the bottleneck
lies.  As for why 64-bit mode causes this problem, we guess that data for mcf has lower spatial
locality and that 64-bit mode pulls larger sized blocks into the cache, which increases miss rate.

Another interesting case is equake, which had a larger number of misses in 64-bit mode but with
only a marginal degrade in performance.  Although equake has a high percentage of load
instructions, we believe the cycles wasted resolving cache misses is balanced out by the longer
latency floating point operations, such as multiplication.

Figure 9 – Number of data cache accesses
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Table 8 – Data cache miss rate percentages

Figure 10 – Number of data cache misses

We now take a look at the number of fetches from the instruction cache.  Figure 10 shows that the
number of fetches for both modes are rather similar.  The largest difference is with the program art,
which also had significantly fewer instructions executed as shown above in Figure 8.

We do not provide the number of instruction cache misses nor miss rates as all were insignificant
compared to the number of fetches—almost 1% for one benchmark and usually much less.  One
observation, however, was that crafty has a large difference in the number of misses between modes
with 32-bit mode having about 36 times the misses as 64-bit mode.  Mesa, also, has a huge number
of misses in 32-bit mode relative to 64-bit mode with over 260 times as many fetch misses.  Despite
these large differences in cache misses, we do not see as large a difference in execution time since
these misses only account for less than 1% of all instruction cache fetches.
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Figure 11 – Number of instruction cache fetches

3.2.3 Branches and Floating Point Instructions
For the integer benchmarks, we look at branch prediction as that is a key component of efficient
architectures.  However, we do not expect branch performance to be much affected by the bit mode
of the program.  We observe in Figure 11 both the 32-bit and 64-bit versions of each program having
a similar number of branches, which is unsurprising.  We do unexpectedly observe somewhat fewer
branch mispredictions for the 64-bit programs.  Although this must help performance for the 64-bit
applications, we cannot readily determine why this would occur.  It is possible that 64-bit mode
looks at more bits in the instruction pointer so that a branch counter corresponds to only one branch
instruction, giving greater accuracy.  This is just speculation, however.  We provide misprediction
rates in Table 9.
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Figure 12 – Number of branches executed

Table 9 – Branch misprediction rate percentages

Figure 13 – Number of mispredicted branches
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For the floating point benchmarks, we see from Figure 12 that in all cases the number of floating
point instructions executed is reduced in 64-bit mode.  As with the reduction in total instructions
seen in Figure 8, we believe this is due to fewer memory fetches required to retrieve a 64-bit wide
operand.  We also see an increase in the number of dispatch stalls due to a full floating point unit for
the 32-bit programs.  Possibly the dispatch unit stalls from data being by-passed to an execution unit
waiting for its operands to be loaded from memory.

Figure 14 – Number of floating point instructions executed

Figure 15 – Number of dispatch stalls caused by full FP units

17

ammp  art  equake  mesa

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

2250000

2500000

2750000

3000000

3250000

Floating Point Instruction Samples for FP Benchmarks

AMD64 (64-bit)

AMD64 (32-bit)

Fl
o
a
ti

n
g
 P

o
in

t 
In

st
ru

ct
io

n
s

ammp  art  equake  mesa

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

2250000

2500000

2750000

3000000

3250000

3500000

3750000

4000000

4250000

4500000

4750000

Dispatch Stall Samples for FP Benchmarks

AMD64 (64-bit)

AMD64 (32-bit)

D
is

p
a
tc

h
 S

ta
lls



4 Conclusions
Having completed our experiments, several conclusions may be drawn.  The main finding is that 64-bit
computing does not automatically translate to a marked improvement in performance.  If a program
does not make use of 64-bit data types, then we will probably see little benefit in execution time.  In
fact, the execution speed may be worse, most likely due to issues with cache utilization.  However,
some programs that primarily operate on 32-bit data may still see a moderate speedup under the
AMD64 architecture, most likely due to the additional GPRs added to the x86 instruction set.  For
programs utilizing 64-bit data types, such as many floating point heavy scientific applications, then an
approximate 40% boost in performance can be expected, which provides a strong incentive to invest in
a 64-bit system.

4.1 Future Work
Future experiments regarding 32-bit versus 64-bit might encompass a few improvements.  First, while
we were able to see noticeable patterns in the programs under study, we would like to utilize the full
SPEC benchmark suite for our tests.  Next, a larger selection of hardware would be useful.  We would
like to compare these results to the other main 64-bit architectures, such as IBM's PowerPC and Intel's
Itanium processors.  For comparison against strictly 32-bit machines, we would rather use another
AMD processor, such as the Athlon 3000+, as the cache design, branch prediction, and performance
counters would be more similar to the 3200+ we tested here.  Finally, we would like to see the
compiler's role in this issue by testing several different compilers, such as Microsoft Visual Studio or
Intel's compiler.
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Appendix A – Summary of Data Collected
We present a summary of the numerical data collected from OProfile in this section.

Table 10 – Samples gathered from OProfile for AMD64 in 64-bit mode

Table 11 – Samples gathered from OProfile for AMD64 in 32-bit mode

Table 12 – Samples gathered from OProfile for Pentium 4

20

Threshold Count: 1000000 1000000 100000 10000 100000 10000 100000 10000

Event: CPU_CLK_UNHALTED RETIRED_INSNS DATA_CACHE_ACCESSES DATA_CACHE_MISSES ICACHE_FETCHES ICACHE_MISSES RETIRED_BRANCHES RETIRED_BRANCHES_MISPREDICTED

gzip: 263136 309184 971881 397984 1602179 50 679291 252150

mcf: 549497 48294 229722 731153 269706 38 114652 55674

vpr: 278453 167753 888449 369611 883175 55 262192 226624

crafty: 111020 140121 527893 46644 682839 914 237744 147952

bzip2: 279400 296598 1128709 230667 1283855 35 462684 252187

parser: 447013 289800 1372123 439856 1397294 690 625680 294759

twolf: 547327 277140 1202952 747320 1367962 199 433704 436384

Threshold Count: 1000000 1000000 100000 10000 100000 10000 100000 100000

Event: CPU_CLK_UNHALTED RETIRED_INSNS DATA_CACHE_ACCESSES DATA_CACHE_MISSES ICACHE_FETCHES ICACHE_MISSES RETIRED_FPU_INSTRS DISPATCH_STALL_FPU

ammp: 392329 317436 1332155 539837 1327628 125 2026517 1219803

art: 499408 115840 289104 1126093 402582 59 389659 2605307

equake: 218870 105293 609184 340095 395197 22 690901 910738

mesa: 207554 240685 996238 31443 994534 518 573336 121267

Threshold Count: 1000000 1000000 100000 10000 100000 10000 100000 10000

Event: CPU_CLK_UNHALTED RETIRED_INSNS DATA_CACHE_ACCESSES DATA_CACHE_MISSES ICACHE_FETCHES ICACHE_MISSES RETIRED_BRANCHES RETIRED_BRANCHES_MISPREDICTED

gzip: 299953 307387 1376253 394103 1569501 64 641607 336162

mcf: 373575 49707 264375 595383 254608 19 116648 59146

vpr: 305731 194217 1292560 341667 937655 45 302555 259467

crafty: 161789 213800 1096639 49142 925110 33219 290755 188955

bzip2: 293944 281515 1512500 230742 1159546 39 465894 254740

parser: 369014 296480 1665304 286982 1339458 746 622154 312010

twolf: 507275 278443 1498662 676264 1566129 356 512042 590284

Threshold Count: 1000000 1000000 100000 10000 100000 10000 100000 100000

Event: CPU_CLK_UNHALTED RETIRED_INSNS DATA_CACHE_ACCESSES DATA_CACHE_MISSES ICACHE_FETCHES ICACHE_MISSES RETIRED_FPU_INSTRS DISPATCH_STALL_FPU

ammp: 483994 410886 2308546 536192 1243256 121 3006379 1510555

art: 895548 219159 963490 2061734 713675 88 815022 4687688

equake: 214915 144248 1654664 29220 368151 16 936688 537223

mesa: 330372 274517 851578 300452 1064572 92397 817249 203634

Threshold Count: 1000000 1000000

Event: GLOBAL_POWER_EVENTS INSTR_RETIRED

gzip: 441634 312568

mcf: 890681 49433

vpr: 682295 198219

crafty: 321363 215415

bzip2: 621767 282513

parser: 628023 300067

twolf: 1265446 288098

ammp: 1359233 390054

art: 2971109 219834

equake: 662880 148961

mesa: 406642 288732



Appendix B – Using OProfile
In this section, we describe how to use OProfile to collect program data.  First, we discuss how to install
OProfile in case it is not available on a GNU/Linux system.  Then we give the most common
commands for running OProfile.  Both input and output are in monospace font with input also in bold.
The character '>' is used as the command prompt in the examples.

B.1 Installing OProfile
While OProfile may already be installed on your system, as was the case with the AMD64 machine, the
program may not be available initially, such as with the Pentium 4.  Even if the Linux distribution
includes OProfile, you may still have to follow these steps as it still may not be a loadable module or
compiled into the kernel.  Unfortunately, as OProfile works at a rather low system level, direct kernel
support must given, which implies that the kernel source may need to be recompiled to use OProfile.
We will try to achieve this as simply as possible.

Switch to the root user and check if OProfile is already installed:
> su
> opcontrol -l  

If you see the following message, then you will need to continue on and compile the kernel:  
FATAL: Module oprofile not found.
FATAL: Module oprofile not found.
Kernel doesn't support oprofile

Otherwise, if a list of several events to monitor are listed, then OProfile is already configured to run on
your system, and you can skip this section.

As root, change to the directory containing the kernel source code:
> su
> cd /usr/src/linux-x.x.x

Configure the kernel options:
> make menuconfig

A text-base menu will appear and you will need to select a few options.  Find and select yes to the
following options:

Processor type and features -> Local APIC support for uniprocessors
Processor type and features -> Local IO-APIC support for uniprocessors
Profiling support -> Profiling support
Profiling support -> OProfile system profiling

Exit and confirm that you would like to save your new kernel configuration.

Compile the kernel code and modules, install the modules, and install the final executable into the boot
partition (this may take a long time as hundreds of source files will be compiled):

> make bzImage modules modules_install install

Once this is done, a new bootable sector, probably called vmlinuz-x.x.xcustom is created in /boot.  The
old vmlinuz is not removed, so even if something went wrong with the build, you will still be able to
boot your old kernel.  Finally, reboot the system and, assuming the use of a bootloader such as GRUB,
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a new option for a custom linux kernel should appear along with the old kernel choice.  Select to boot
the custom kernel.  You should now be able to use the OProfile tool set.

B.2 Basic Usage
We give an example of using OProfile through a command console with the assumption that OProfile is
already available and working on your system (see B.1 if this is not the case).

Gain root access to run the main tool, opcontrol:
> su
Password:

Print basic usage:
> opcontrol
opcontrol: usage:
   -l/--list-events list event types and unit masks
   -?/--help        this message
   -v/--version     show version
...

Monitor linux kernel (only setup one time):
> opcontrol --vmlinux=/boot/2.6.0/vmlinux

Or do not monitor linux kernel (this must be set if only vmlinuz is available):
> opcontrol –-no-vmlinux

List all events that can be monitored:
> opcontrol -l  
oprofile: available events for CPU type "AMD64 processors"

CPU_CLK_UNHALTED: (counter: all)
        Cycles outside of halt state (min count: 3000)

RETIRED_INSNS: (counter: all)
        Retired instructions (includes exceptions, interrupts, re-syncs)
...

Monitor an event using a threshold count of 100000:
> opcontrol –-event=CPU_CLK_UNHALTED:100000

Start profiling:
> opcontrol –-start
Using 2.6+ OProfile kernel interface.
Using log file /var/lib/oprofile/oprofiled.log
Daemon started.
Profiler running.

View profile results (any user can run this command—not just root):
> opreport
CPU: AMD64 processors, speed 2009.15 MHz (estimated)
Counted CPU_CLK_UNHALTED events (Cycles outside of halt state) with a unit mask of
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0x00 (No unit mask) count 100000
CPU_CLK_UNHALT...|
  samples|      %|
------------------
    28665 44.3312 no-vmlinux
     4690  7.2532 libsal.so.3.1.0
     2821  4.3628 libgcc_s-3.3.3-20040413.so.1
     2076  3.2106 Xorg

...

Note that you will get this error message if OProfile hasn't had enough time to generate data:
opreport error: No sample file found: try running opcontrol --dump
or specify a session containing sample files

Stop profiling:
> opcontrol --stop
Stopping profiling.

Reset count to zero for number of samples collected:
> opcontrol --reset
Signalling daemon... done

Close background daemon (must also be done before setting new events to monitor):
> opcontrol --shutdown
Stopping profiling.
Killing daemon.
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